首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1150篇
  免费   123篇
  国内免费   45篇
电工技术   10篇
综合类   38篇
化学工业   737篇
金属工艺   34篇
机械仪表   23篇
建筑科学   25篇
矿业工程   1篇
能源动力   1篇
轻工业   315篇
水利工程   1篇
石油天然气   6篇
无线电   5篇
一般工业技术   72篇
冶金工业   17篇
原子能技术   4篇
自动化技术   29篇
  2024年   2篇
  2023年   29篇
  2022年   27篇
  2021年   178篇
  2020年   61篇
  2019年   57篇
  2018年   34篇
  2017年   41篇
  2016年   51篇
  2015年   59篇
  2014年   95篇
  2013年   90篇
  2012年   73篇
  2011年   78篇
  2010年   61篇
  2009年   58篇
  2008年   59篇
  2007年   44篇
  2006年   38篇
  2005年   19篇
  2004年   28篇
  2003年   20篇
  2002年   9篇
  2001年   17篇
  2000年   7篇
  1999年   9篇
  1998年   10篇
  1997年   4篇
  1996年   2篇
  1995年   5篇
  1994年   13篇
  1993年   9篇
  1992年   10篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1977年   1篇
排序方式: 共有1318条查询结果,搜索用时 140 毫秒
21.
Dysregulated inflammasome activation and interleukin (IL)-1β production are associated with several inflammatory disorders. Three different routes can lead to inflammasome activation: a canonical two-step, a non-canonical Caspase-4/5- and Gasdermin D-dependent, and an alternative Caspase-8-mediated pathway. Natriuretic Peptides (NPs), Atrial Natriuretic Peptide (ANP) and B-type Natriuretic Peptide (BNP), binding to Natriuretic Peptide Receptor-1 (NPR-1), signal by increasing cGMP (cyclic guanosine monophosphate) levels that, in turn, stimulate cGMP-dependent protein kinase-I (PKG-I). We previously demonstrated that, by counteracting inflammasome activation, NPs inhibit IL-1β secretion. Here we aimed to decipher the molecular mechanism underlying NPs effects on THP-1 cells stimulated with lipopolysaccharide (LPS) + ATP. Involvement of cGMP and PKG-I were assessed pre-treating THP-1 cells with the membrane-permeable analogue, 8-Br-cGMP, and the specific inhibitor KT-5823, respectively. We found that NPs, by activating NPR-1/cGMP/PKG-I axis, lead to phosphorylation of NLRP3 at Ser295 and to inflammasome platform disassembly. Moreover, by increasing intracellular cGMP levels and activating phosphodiesterases, NPs interfere with both Gasdermin D and Caspase-8 cleavage, indicating that they disturb non-canonical and alternative routes of inflammasome activation. These results showed that ANP and BNP anti-inflammatory and immunomodulatory actions may involve the inhibition of all the known routes of inflammasome activation. Thus, NPs might be proposed for the treatment of the plethora of diseases caused by a dysregulated inflammasome activation.  相似文献   
22.
Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides to modulate multiple signaling events in cells. PDEs are recognized to actively associate with cyclic nucleotide receptors (protein kinases, PKs) in larger macromolecular assemblies referred to as signalosomes. Complexation of PDEs with PKs generates an expanded active site that enhances PDE activity. This facilitates signalosome-associated PDEs to preferentially catalyze active hydrolysis of cyclic nucleotides bound to PKs and aid in signal termination. PDEs are important drug targets, and current strategies for inhibitor discovery are based entirely on targeting conserved PDE catalytic domains. This often results in inhibitors with cross-reactivity amongst closely related PDEs and attendant unwanted side effects. Here, our approach targeted PDE–PK complexes as they would occur in signalosomes, thereby offering greater specificity. Our developed fluorescence polarization assay was adapted to identify inhibitors that block cyclic nucleotide pockets in PDE–PK complexes in one mode and disrupt protein-protein interactions between PDEs and PKs in a second mode. We tested this approach with three different systems—cAMP-specific PDE8–PKAR, cGMP-specific PDE5–PKG, and dual-specificity RegA–RD complexes—and ranked inhibitors according to their inhibition potency. Targeting PDE–PK complexes offers biochemical tools for describing the exquisite specificity of cyclic nucleotide signaling networks in cells.  相似文献   
23.
The vascularization of tissue-engineered bone is the key problem needed solving before application of tissue-engineered bone in clinical practice. Meanwhile, endothelial cells are the major and important source of seed cells in bone tissue engineering, and significant on promoting vascularization in tissue-engineered bone. Vascularization (namely angiogenesis) is a process mainly controlled by several angiogenic growth factors (VEGF, bFGF and MMP-2) which can be secreted by endothelial cells. Therefore, the research on the stimulations of SCPP to the secretion of the angiogenic growth factors from endothelial cells is very important. This study was performed to determine the ability of strontium-doped calcium polyphosphate (SCPP) to induce angiogenesis by detecting the protein secretion levels and mRNA expression of VEGF, bFGF and MMP-2 from cultured endothelial cells. As a control, we also researched the effect of HA on the mRNA expressions and protein secretion of angiogenic growth factors from cultured endothelial cells. We cultured endothelial cells with SCPP scaffolds containing various concentration of strontium and HA. The results obtained in the MTT and SEM tests indicated that endothelial cells on SCPP scaffold exhibited higher proliferation rate and were easy to get a good spread than them on CPP, the best state of growth and proliferation of cells could be observed on 8%SCPP. The results of ELISA demonstrated that the protein levels of VEGF, bFGF and MMP-2 from cultured endothelial cells increased with the increasing Sr doped in calcium polyphosphate in SCPP groups, the peaks appeared on 8%SCPP. All SCPP groups showed a better ability to stimulate the protein secretion of VEGF, bFGF and MMP-2 from endothelial cells relative to CPP group and HA group. The results of RT-PCR suggested that the 8%SCPP group exhibited a significantly higher mRNA expression of VEGF, bFGF and MMP-2 relative to CPP group and HA group. In conclusion, the results of this study demonstrated that 8%SCPP had obvious promotion for secretion and mRNA expression of angiogenic growth factors from cultured endothelial cells.  相似文献   
24.
以正硅酸乙酯(TEOS)及3-氨基丙基三乙氧基硅烷(ATOS)为原料,采用溶胶-凝胶法对聚磷酸铵(APP)进行了表面改性并用于阻燃环氧树脂。结果表明:TEOS及ATOS通过水解、聚合反应在改性APP(MAPP)表面生成了一层致密且类似荷叶表面微-纳米结构的聚硅氧烷膜,MAPP的溶解度由0.62降低为0.18 g/100 m L水,疏水性及耐水性明显增强。  相似文献   
25.
以多元醇、二异氰酸酯、聚磷酸铵(APP)、三聚氰胺(MA)等为原料,采用一步法,制得阻燃聚氨酯泡沫塑料。研究了不同阻燃剂的用量对聚氨酯泡沫的力学性能、热性能和阻燃性能的影响。结果表明,材料拉伸强度随阻燃剂添加量的增加而增加;材料的极限氧指数和在500℃时的分解残留量均随复合阻燃剂添加量的增加先增大后减小;APP/MA复合阻燃剂的效果好于单组分APP。  相似文献   
26.
Programmed cell death (PCD) is a crucial process required for the normal development and physiology of metazoans. The three major mechanisms that induce PCD are called type I (apoptosis), type II (autophagic cell death), and type III (necrotic cell death). Dysfunctional PCD leads to diseases such as cancer and neurodegeneration. Although apoptosis is the most common form of PCD, recent studies have provided evidence that there are other forms of cell death. One of such cell death is autophagic cell death, which occurs via the activation of autophagy. The present review summarizes recent knowledge about autophagic cell death and discusses the relationship with tumorigenesis.  相似文献   
27.
Adenylyl cyclase (AC) is a key enzyme that synthesizes cyclic AMP (cAMP) at the onset of the signaling pathway to activate sperm motility. Here, we showed that both transmembrane AC (tmAC) and soluble AC (sAC) are distinctly involved in the regulation of sperm motility in the ascidian Ciona intestinalis. A tmAC inhibitor blocked both cAMP synthesis and the activation of sperm motility induced by the egg factor sperm activating and attracting factor (SAAF), as well as those induced by theophylline, an inhibitor of phoshodiesterase. It also significantly inhibited cAMP-dependent phosphorylation of a set of proteins at motility activation. On the other hand, a sAC inhibitor does not affect on SAAF-induced transient increase of cAMP, motility activation or protein phosphorylation, but it reduced swimming velocity to half in theophylline-induced sperm. A sAC inhibitor KH-7 induced circular swimming trajectory with smaller diameter and significantly suppressed chemotaxis of sperm to SAAF. These results suggest that tmAC is involved in the basic mechanism for motility activation through cAMP-dependent protein phosphorylation, whereas sAC plays distinct roles in increase of flagellar beat frequency and in the Ca2+-dependent chemotactic movement of sperm.  相似文献   
28.
In vitro mammalian cytogenetic tests detect chromosomal aberrations and are used for testing the genotoxicity of compounds. This study aimed to identify a supportive genomic biomarker could minimize the risk of misjudgments and aid appropriate decision making in genotoxicity testing. Human lymphoblastoid TK6 cells were treated with each of six DNA damage-inducing genotoxins (clastogens) or two genotoxins that do not cause DNA damage. Cells were exposed to each compound for 4 h, and gene expression was comprehensively examined using Affymetrix U133A microarrays. Toxicogenomic analysis revealed characteristic alterations in the expression of genes included in cyclin-dependent kinase inhibitor 1A (CDKN1A/p21)-centered network. The majority of genes included in this network were upregulated on treatment with DNA damage-inducing clastogens. The network, however, also included kinesin family member 20A (KIF20A) downregulated by treatment with all the DNA damage-inducing clastogens. Downregulation of KIF20A expression was successfully confirmed using additional DNA damage-inducing clastogens. Our analysis also demonstrated that nucleic acid constituents falsely downregulated the expression of KIF20A, possibly via p16 activation, independently of the CDKN1A signaling pathway. Our results indicate the potential of KIF20A as a supportive biomarker for clastogenicity judgment and possible mechanisms involved in KIF20A downregulation in DNA damage and non-DNA damage signaling networks.  相似文献   
29.
The C1 domain, which represents the recognition motif on protein kinase C for the lipophilic second messenger diacylglycerol and its ultrapotent analogues, the phorbol esters, has emerged as a promising therapeutic target for cancer and other indications. Potential target selectivity is markedly enhanced both because binding reflects ternary complex formation between the ligand, C1 domain, and phospholipid, and because binding drives membrane insertion of the C1 domain, permitting aspects of the C1 domain surface outside the binding site, per se, to influence binding energetics. Here, focusing on charged residues identified in atypical C1 domains which contribute to their loss of ligand binding activity, we showed that increasing charge along the rim of the binding cleft of the protein kinase C δ C1 b domain raises the requirement for anionic phospholipids. Correspondingly, it shifts the selectivity of C1 domain translocation to the plasma membrane, which is more negatively charged than internal membranes. This change in localization is most pronounced in the case of more hydrophilic ligands, which provide weaker membrane stabilization than do the more hydrophobic ligands and thus contributes an element to the structure–activity relations for C1 domain ligands. Coexpressing pairs of C1‐containing constructs with differing charges each expressing a distinct fluorescent tag provided a powerful tool to demonstrate the effect of increasing charge in the C1 domain.  相似文献   
30.
周期蛋白依赖性激酶4/6(cyclin-dependent kinase 4/6,CDK4/6) 是一类丝氨酸/苏氨酸激酶,通过与细胞周期蛋白D(cyclin D)结合,调节视网膜母细胞瘤蛋白(Rb)的磷酸化状态,Rb磷酸化后与E2F转录因子分离,释放的E2F可以自由激活一系列基因表达,参与DNA复制和细胞分裂,从而介导细胞G1/S期转换,影响细胞周期的进程。近年研究发现CDK4/6在多种肿瘤发生和发展过程中起着核心作用,已成为临床多种肿瘤治疗的重要分子靶点。本文将对CDK4/6与肿瘤的关系以及CDK4/6抑制剂临床应用的最新研究进展做一综述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号